A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene
نویسندگان
چکیده
Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells in vivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myoblasts, 55% of which are also marked with H3K9me2 and enriched for myogenic, cell cycle and developmental regulators. Knockdown of PRDM2 alters histone methylation at key promoters such as Myogenin and CyclinA2 (CCNA2), and subverts the quiescence program via global de-repression of myogenesis, and hyper-repression of the cell cycle. Further, PRDM2 acts upstream of the repressive PRC2 complex in G0. We identify a novel G0-specific bivalent chromatin domain in the CCNA2 locus. PRDM2 protein interacts with the PRC2 protein EZH2 and regulates its association with the bivalent domain in the CCNA2 gene. Our results suggest that induction of PRDM2 in G0 ensures that two antagonistic programs-myogenesis and the cell cycle-while stalled, are poised for reactivation. Together, these results indicate that epigenetic regulation by PRDM2 preserves key functions of the quiescent state, with implications for stem cell self-renewal.
منابع مشابه
Time dependent of epigenetic effect of disulfiram on tumor suppressor gene of RASSF1A in Hela cancer cell line
Introduction: Cervical cancer is the third most common tumor among women. Surgery, radiotherapy, and chemotherapy are common treatments, however high stage tumors have frequently poor prognosis. Nowadays, the epigenetic reversion introduced as an efficient strategy of treatment of cervical cancer. In the process, inhibitors of DNA methyltransferase (DNMT) induce re-expression of tumor suppresso...
متن کاملStructural and functional characterization of the acidic region from the RIZ tumor suppressor.
RIZ (retinoblastoma protein-interacting zinc finger protein), also denoted PRDM2, is a transcriptional regulator and tumor suppressor. It was initially identified because of its ability to interact with another well-established tumor suppressor, the retinoblastoma protein (Rb). A short motif, IRCDE, in the acidic region (AR) of RIZ was reported to play an important role in the interaction with ...
متن کاملThe retinoblastoma protein-interacting zinc finger gene RIZ in 1p36-linked cancers.
Mutations or changes in protooncogenes and tumor suppressor genes are casually linked to human cancer pathogenesis. The RIZ gene is isolated based on the capacity its gene products to bind to the retinoblastoma tumor suppressor protein. Consistent with a potential role in the Rb pathway, RIZ may play an important role in human cancer pathogenesis. RIZ maps to human chromosome band 1p36, a regio...
متن کاملThe Epigenetic Modifier PRDM5 Functions as a Tumor Suppressor through Modulating WNT/β-Catenin Signaling and Is Frequently Silenced in Multiple Tumors
BACKGROUND PRDM (PRDI-BF1 and RIZ domain containing) proteins are zinc finger proteins involved in multiple cellular regulations by acting as epigenetic modifiers. We studied a recently identified PRDM member PRDM5 for its epigenetic abnormality and tumor suppressive functions in multiple tumorigeneses. METHODOLOGY/PRINCIPAL FINDINGS Semi-quantitative RT-PCR showed that PRDM5 was broadly expr...
متن کاملAnticancer Activity of the PR Domain of Tumor Suppressor RIZ1
Human tumor suppressor gene RIZ encodes two protein products, tumor suppressor RIZ1 and proto-oncoprotein RIZ2, which regulate cellular functions in a Yin-Yang fashion. The only structural difference between them is that RIZ2 lacks the N-terminal PR domain. In this study, we showed that RIZ1 mRNA expression level was elevated in stage IV of eight different types of cancer (stage III for prostat...
متن کامل